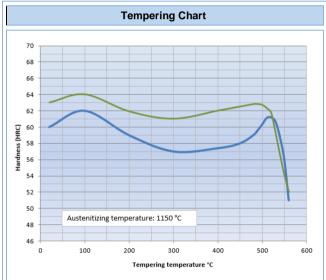
DIE WELT DES EDELSTAHLS THE WORLD OF SPECIAL STEEL

Oberste-Beulmann Edelstähle – Special Steels

			Grade Code (SEL)				Powder metallurgical						
Techn	ical Data S	oB-PM-M39			-					Plastic Mouls Steel			
Steel properties													
OB-PM-M39 is a martensitic tool steel produced by means of a powder metallurgical process. It has a very fine, uniform, segregation-free microstructure and carbide distribution. Its well-balanced alloy composition combines an optimum array of properties spanning wear resistance, toughness and corrosion resistance. Its exceptional wear resistance stems from a high percentage of hard vanadium carbides, while the excellent corrosion resistance is the result of a chromium-rich matrix. Due to its high degree of purity, OB-PM-M39 is suitable for mirror-bright finishing and possesses minimum susceptibility to dimensional change.													
Applications													
		tools which ree	quire high corrosion	n resistance	e. aood v	vear resis	tance and	optimum	n touahne:	ss:			
OB-PM-M39 is suitable for tools which require high corrosion resistance, good wear resistance and optimum toughness: Granulator blades, wearing parts for food and chemical processing, injection and extruder screws and moulds made of plastic, cylinder liners, screw tips and mould cavities, in particular for synthetic resins containing abrasive fillers.													
<u>C %</u>	<u>Si %</u>	<u>Mn %</u>	<u>Cr %</u>	<u>Mo %</u>	Ni	<u>%</u>	<u>V %</u>	V	<u>V %</u>	<u>Co %</u>	S	onst. %	
1,90	0,70	0,30	20,00	1,00	-		4,00	C),60	-		-	
Melting					Remar	ks							
Density (g/cm ³)		7,60											
Supply condition		soft anneale	d										
Hardness (HE	3)	max. 280											
Tensile strength (N/mm ²)		-											
Work hardnes	ss (HRC)	57 – 63 (dep											
Structure		-											
Cleanness (D	IN 50602)	K1 max. 15											
Physical properties				20 °C	100 °C	200 °C	300 °C	350 °C	400 °C	500 °C	600 °C	700 °C	
Thermal expansion coeffic		cient 10 ⁻⁶	* K (20 °C to)	-	10,9	11,2	11,8	-	12,1	12,3	-	-	
Thermal conductivity (w/m		m * K) ann	ealed	16,5	18,0	19,4	20,4	-	21,9	22,7	-	-	
			Comparis	on of micr	ostructi	iral prop	erties						
	Carbid	e distribution	(V = 100:1)			Segregation (v = 50:1)							
conventional			OB powderTEC		conventional				OB powderTEC				
500 µт			500 μm			1000 µm				1000 µm			
Heat treatmen	nt	Temperature	e (°C) Cooling	Rer	marks heat treatment								
Stress-relief a	annealing	ca. 650	Furnace -	Furnace – Air Stress relief after extensive machining and in case of complex tools.									
				Но	lding tir	1e: min. 4	h - contro	olled furn	ace coolir	ng to appro	ox. 300 °	C,	
				foll	owed by	cooling in	n still air						

Note: The information contained in this brochure serves to describe the relevant products and processes; liability is excluded.


Wilhelm Oberste-Beulmann GmbH & Co. KG

DIE WELT DES EDELSTAHLS THE WORLD OF SPECIAL STEEL

Oberste-Beulmann Edelstähle – Special Steels

Heat treatment	Temperature (°C) Cooling		Remarks heat treatment					
Hardening	1070 – 1170		Hardening can be carried out under vacuum, in salt bath or in a furnace with a controlled (neutral) atmosphere.					
Pre – heating Step 1	ca. 400							
Pre – heating Step 2	ca. 800		Recommendations:					
	-		Austenitizing temperature: 1070–1130 °C increased toughness 1130–1170 °C: maximum wear resistand					
			A competent and experienced heat treatment company should be contacte for further details relating to the process					
Deep cooling	- 70	Air	Holding time: 1–2 h – warm up to ambient temperature in still air					
			When austenitizing temperatures of over 1150 °C are involved, refrigerat treatment is recommended after quenching to approx. 80 °C and bef tempering, in order to reduce any residual austenite.					
Quenching	500 – 530 Hot bath		Quench in hot bath and hold. Followed by slow cooling.					
	-	Vakuum	Gas pressure: Dependent on size of part, but min. 4 bar. Then continue cooling to room temperature in still air.					

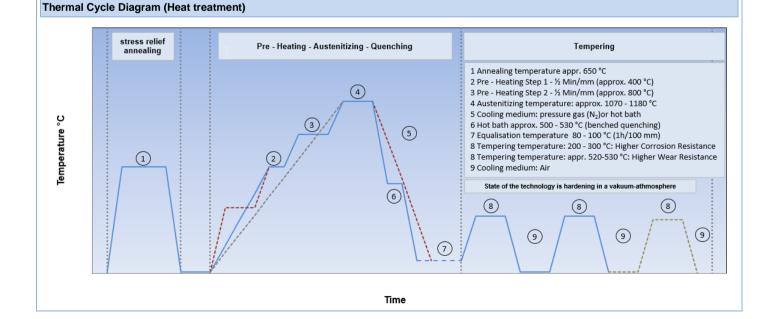
Tempering – Hardness (HRC) after tempering (Reference value)

Temperature °C	100	200	300	400	500	540	550
Without deep cooling	62	59	57	58	60	59	54
With deep cooling	64	62	61	62	62	58	54

Remarks for tempering

Temper directly after quenching or quenching and refrigeration treatment Slow heating to tempering temperature directly after hardening

A second tempering cycle is necessary, a third cycle is recommended


The tempering process is dependent on the given requirements.

Holding time in furnace 1 h per 20 mm of workpiece thickness, but min. 2 h

Tempering temperature:

Corrosion resistance	200 – 300 °C
Wear resistance	520 – 530 °C

Hardness: 57–59 HRC Hardness: 62–63 HRC

Okt-21

Note: The information contained in this brochure serves to describe the relevant products and processes; liability is excluded.

Wilhelm Oberste-Beulmann GmbH & Co. KG

An der Hasenjagd 2, D-42897 Remscheid | Tel.: +49 (0) 2191 93 60-0 | Fax: +49 (0) 2191 93 60 70 | info@oberste-beulmann.de | www.oberste-beulmann.de