

OB-PM-S59 HIGH SPEED STEEL

OBERSTE-BEULMANN *powderTEC®*: MAXIMUM PERFORMANCE. MAXIMUM PRECISION.

4TH-GENERATION POWDER-METALLURGICAL STEEL

OB-PM-S59 is a cobalt-alloyed high-speed steel produced by means of a powder metallurgical process which has a very fine, uniform, segregation-free microstructure and carbide distribution. It possesses good wear resistance, good hot hardness, good compressive strength and good toughness. OB-PM-S59 is very suitable for nitriding and its homogeneous microstructure also makes it ideal for PVD and CVD coating.

ADVANTAGES AND BENEFITS

- High-speed steel produced by means of
- a powder metallurgical process
- Good hot hardness
- Good compressive strength
- Good wear resistance

Product merits:

Very good workabilityExcellent grindability

Bottom left: Powder-metallurgical high-speed steel OB-PM-S59 offers very good workability.

Top: Good hot hardness and high compressive strength provide machining tools of the highest standard.

Bottom right: Tools made of OB-PM-S59 enable maximum-precision machining.

APPLICATIONS

OB-PM-S59 is particularly suitable for high-performance machining tools such as stamping, punching, blanking, cutting and forming tools (heavy-duty hob cutters, broaches, generating cutters, punches, dies etc.). Other applications include machining tools for titanium- or nickel-based alloys.

COMPARISON OF MICROSTRUCTURE PROPERTIES

Left: Oberste-Beulmann *powderTEC*® Right: Conventional steel

COMPOSITION

MATERIAL NO.	ABBREVIATED NAME	CHEMICAL COMPOSITION IN %							ANNEALED HARDNE	SS WORKING HARDNE	ss		
		c	Si	MN	CR	Мо	w	V	Со	Ni	МАХ. НВ	HRC	
OB-PM-S59	559		0.50	0.40	4.20	5.00	6.30	3.00	8.40		300	63-68	
SMELTING	SPEC. WEIGHT	STATE ON DELIVERY				TENSILE STRENGTH (N/MM ²) MICROS			MICROS	TRUCTURE	DEGREE OF PURITY (DIN 50	0602)	
	8.00 g/qm ³		Sof	Soft-annealed								K1 max. 15	

PHYSICAL PROPERTIES

PARAMETERS			TEMPERATURE									
			20 °C	100 °C	200 °C	300 °C	350 °C	400 °C	500 °C	600 °C	700 °C	
Coefficient of thermal expansion	10 ⁻⁶ * K	(20 °C to)	_	10.3	10.5	10.8	_	11.0	11.6	11.9	12.1	
Thermal conductivity (W/m * K)	Annealed		19.9	21.7	23.7	24.7	-	25.8	26.6	28.0	29.8	

HEAT TREATMENT

HEAT TREATMENT	TEMPERATURE (°C)	COOLING	NOTES ON HEAT TREATMENT
		-	Stress relief after extensive machining and in case of complex tools.
Stress-relief annealing	approx. 650	Furnace Air	Holding time: min. 4 h – controlled furnace cooling to approx. 500 °C, followed by cooling in still air.
Hardening	1050–1200		Hardening can be carried out under vacuum, in salt bath or in a furnace with a controlled (neutral) atmosphere.
Pre-heating stage 1 Pre-heating stage 2 Pre-heating stage 3	450–550 850–900 1050*		* Essential when high austenitizing temperatures are involved.
Quenching	approx. 550	Hot bath Vacuum	Quench in hot bath and hold. Followed by slow cooling to lukewarm temperature in the air. Gas pressure: Dependent on size of part, but min. 4 bar. Then continue cooling to room temperature in still air.

TEMPERING

HARDNESS (HRC) AFTER TEMPERING									
		500 °C	520 °C	540 °C	560 °C	580 °C	600 °C	620 °C	
1180 °C		67.5	68.0	67.5	67.0	65.5	63.5	61.0	
1150 °C		67.0	67.0	66.5	65.5	64.0	61.5	58.5	
1100 °C		66.0	65.5	65.5	64.0	62.0	59.5	56.5	

The tempering diagram shows hardness values at different austenitizing and tempering temperatures.

Notes on tempering

- Temper directly after quenching
- Slow heating to tempering temperature directly after hardening
- Holding time in furnace 1 h per 20 mm of workpiece thickness, but min. 2 h
- A second tempering cycle (normally at 560 °C) is necessary, a third tempering cycle is recommended
- Slow cooling to 50 °C to ensure transformation of residual austenite

TEMPERATURE TIMELINE (HEAT TREATMENT)

Hardening under vacuum conditions represents the state of the art

1 = Annealing temperature approx. 650 °C	
2 = Pre-heating stage 1 – ½ min./mm (approx. 500	°C)

- 3 = Pre-heating stage 2 1/2 min./mm (approx. 850 °C) 8 = Holding temperature approx. 50 °C (1 h/100 mm)
- 4 = Pre-heating stage 3 ½ min./mm (approx. 1050 °C) when high austenitizing temperatures apply
- 5 = Austenitizing temperature approx. 1050–1200 °C

- 6 = Cooling medium: Pressure gas (N_2)
- 7 = Hot bath approx. 550 °C (graduated quenching)
- 9 = Tempering temperature: normally 560 °C
- 10 = Cooling medium: Air

THE OBERSTE-BEULMANN *powderTEC*[®] RANGE:

Plastic mould steel OB-PM-M39

> **Cold-working tool steel** OB-PM-K49

High speed steel OB-PM-S39 OB-PM-S59 OB-PM-S79

Wilhelm Oberste-Beulmann GmbH & Co. KG An der Hasenjagd 2 D-42897 Remscheid Fon: +49 (0) 2191 936 00 mail@oberste-beulmann.de www.oberste-beulmann.de